
TP2 : Optimisation des Scripts Python avec Turtle 🐢✨

Bienvenue dans l'aventure Turtle 2.0 ! 🚀

Maintenant qu'on a dessiné des formes basiques, on va transformer ton code en machine
de guerre : plus court, plus flexible, et plus fun !
On va utiliser des boucles for pour éviter les répétitions (adieu, copier-coller !), des input() pour
laisser l'utilisateur décider (comme un boss), et des fonctions def pour réutiliser ton code comme un
pro.
Prêt à level up ? Allons-y ! 🎉

1. Optimisation avec Boucle for 🔄
Imagine : ton code répète les mêmes instructions ? C'est comme manger la même pizza tous les
jours... ennuyeux ! Une boucle for gère ça en un clin d'œil. Voici un exemple avec le rectangle –
compare les deux versions et teste-les pour voir la magie opérer !
Sans boucle for (le vieux style, long et répétitif) :

Sans boucle for : (le vieux style, long et
répétitif)

Avec boucle for (plus court, plus élégant
– teste-moi ça !) :

from turtle import *

forward(100)
left(90)
forward(50)
left(90)
forward(100)
left(90)
forward(50)

from turtle import *

for i in range(0, 2):
 forward(100)
 left(90)
 forward(50)
 left(90)

Dans le script de gauche, on voit qu’un bloc est
répété 2 fois. Dans ce cas-là, une boucle for
permet de gérer cette répétition.
La variable i prendra les valeurs 0 puis 1 dans
notre cas, la boucle sera effectuée 2 fois.

Pourquoi c'est cool ? Dans la version sans boucle, on répète un bloc 2 fois. Avec for i in
range(2), Python s'en charge automatiquement. Résultat : code plus court, moins d'erreurs, et plus
facile à modifier (change juste le range pour plus de répétitions !).

Astuce de pro 💡 : L'indentation (4 espaces ou une tab) est ton amie ! Elle dit à Python : "Hey,
ce code est DANS la boucle !" Sois rigoureux, sinon... bug party ! 🐛

Exercice fun : Modifie tes scripts du "carré sans coin" et de la "spirale" pour utiliser une boucle
for. Ajoute un commentaire expliquant pourquoi tu l'as fait. Bonus : Fais tourner la spirale plus de
fois et vois ce qui se passe ! Partage ton dessin le plus fou en classe.

indentation

2. Utilisation de input() pour Personnaliser les Dimensions 🎨

Et si ton dessin devenait interactif ? Genre, "Hey utilisateur, choisis la taille et la couleur !" C'est là
que input() entre en scène – comme un menu dans un jeu vidéo.

Exemple à tester (copie, colle, et joue !) :

from turtle import *

Demande à l'utilisateur – fun et personnalisé !
longueur = int(input("Entrez la longueur du rectangle (ex: 100) : "))
largeur = int(input("Entrez la largeur du rectangle (ex: 50) : "))
couleur = input("De quelle couleur veux-tu ton rectangle ? (ex: red, blue, green) : ")

color(couleur) # Applique la couleur choisie

for i in range(2):
 forward(longueur) # Utilise la variable !
 left(90)
 forward(largeur)
 left(90)

hideturtle() # Bye bye tortue
done() # Admire ton œuvre !

Analyse rapide (comme un détective 🕵) :

• input("Message") pose une question à l'utilisateur et stocke la réponse (comme une chaîne
de caractères, aka "str").

• int() convertit ça en nombre entier (sinon, boom – erreur ! Voir TP sur les types de
données).

• Résultat : Ton rectangle est unique à chaque run. Essaie des couleurs folles comme "purple"
ou "hotpink" !

Remarque importante ! ⚠ Sans int(), la réponse est du texte – pas utilisable pour des maths.
Toujours convertir pour les nombres !

Exercice fun : Ajoute des input() dans tes scripts du carré sans coin et de la spirale. Laisse
l'utilisateur choisir la taille, la couleur, et peut-être le nombre de tours pour la spirale.
Bonus : Ajoute un input() pour l'épaisseur du trait (pensize()). Qui fera la spirale la plus épique
? 🏆

3. Création de Fonctions avec def 🛠

Les fonctions, c'est comme des recettes réutilisables : écris une fois, utilise partout ! Parfait pour
ne pas réécrire le même code.

Exemple pour le rectangle (crée un fichier fonction_rectangle.py et teste) :

from turtle import *

def rectangle(longueur, largeur, couleur="black"): # Paramètres avec valeur par
défaut pour la couleur
 color(couleur) # Applique la couleur
 for i in range(2):
 forward(longueur) # Utilise les variables !
 left(90)
 forward(largeur)
 left(90)

Teste la fonction ici ou en console !
rectangle(150, 70, "blue") # Appelle-la avec tes valeurs
hideturtle()
done()

Comment ça marche ?

• def nom_fonction(params): définit ta fonction (les paramètres ne sont pas obligatoires).
• Indente le code dedans (encore l'indentation !).
• Appelle-la avec rectangle(150, 70, "blue") – et pouf, dessin ! Ajoute plus de params

comme pensize pour l'épaisseur.

Astuce fun 💥 : En console, tape rectangle(200, 100, "red") pour un nouveau dessin sans
relancer tout. C'est magique !

Exercice fun :
Crée deux fichiers : fonction_carre_sans_coin.py et fonction_spirale.py. Implémente des
fonctions avec params (taille, couleur, épaisseur...).
Bonus : Ajoute un param pour le nombre de côtés ou de tours. Teste avec des valeurs extrêmes –
qui crash la tortue en premier ? 😜

Défi Ultime : La Fractale Mystère 🌟
Observe la construction de cette fractale (imagine une belle image ici – probablement une courbe de
Koch ou un arbre fractal, avec des phases qui se complexifient !).

Ton défi de ninja 🥷 : Écris un programme qui dessine cette fractale à la phase 4... et au-delà !
Utilise la récursion (fonctions qui s'appellent elles-mêmes), des boucles, et des input() pour choisir
la phase.

