TP2 : Optimisation des Scripts Python avec Turtle
Bienvenue dans l'aventure Turtle 2.0 ! #

Maintenant qu'on a dessiné des formes basiques, on va transformer ton code en machine

de guerre : plus court, plus flexible, et plus fun !

On va utiliser des boucles for pour éviter les répétitions (adieu, copier-coller !), des input() pour
laisser 1'utilisateur décider (comme un boss), et des fonctions def pour réutiliser ton code comme un
pro.

Prét & level up ? Allons-y | &

1. Optimisation avec Boucle for

Imagine : ton code répete les mémes instructions ? C'est comme manger la méme pizza tous les
jours... ennuyeux ! Une boucle for gere ¢a en un clin d'ceil. Voici un exemple avec le rectangle —
compare les deux versions et teste-les pour voir la magie opérer !

Sans boucle for (le vieux style, long et répétitif) :

Sans boucle for : (le vieux style, long et | Avec boucle for (plus court, plus élégant

répétitif) — teste-moi ¢a !) :
from turtle import * from turtle import *
forward(100) for i in range(9, 2):
left(90) I Iforward(100)
forward(50) : :1eft(90)
left(90) : :forwar‘d(Se)
forward(100) |H|1eft(90)
left (90) indentation
forward(50) Dans le script de gauche, on voit qu'un bloc est

répété 2 fois. Dans ce cas-la, une boucle for
permet de gérer cette répétition.

La variable i prendra les valeurs 0 puis 1 dans
notre cas, la boucle sera effectuée 2 fois.

Pourquoi c'est cool ? Dans la version sans boucle, on répete un bloc 2 fois. Avec for i in
range(2), Python s'en charge automatiquement. Résultat : code plus court, moins d'erreurs, et plus
facile & modifier (change juste le range pour plus de répétitions !).

Astuce de pro ¢ : L'indentation (4 espaces ou une tab) est ton amie ! Elle dit a Python : "Hey,

ce code est DANS la boucle !" Sois rigoureux, sinon... bug party | %

Exercice fun : Modifie tes scripts du "carré sans coin" et de la "spirale" pour utiliser une boucle
for. Ajoute un commentaire expliquant pourquoi tu 1'as fait. Bonus : Fais tourner la spirale plus de
fois et vois ce qui se passe ! Partage ton dessin le plus fou en classe.

2. Utilisation de input() pour Personnaliser les Dimensions &

Et si ton dessin devenait interactif 7 Genre, "Hey utilisateur, choisis la taille et la couleur !" C'est 1a

que input() entre en scéne — comme un menu dans un jeu vidéo.

Exemple a tester (copie, colle, et joue!) :

from turtle import *

Demande a l'utilisateur - fun et personnalisé !

longueur = int(input("Entrez la longueur du rectangle (ex: 100) : "))

largeur = int(input("Entrez la largeur du rectangle (ex: 50) : "))

couleur = input("De quelle couleur veux-tu ton rectangle ? (ex: red, blue, green) : ")

color(couleur) # Applique la couleur choisie

for i in range(2):
forward(longueur) # Utilise la variable !
left(90)
forward(largeur)
left(90)

hideturtle() # Bye bye tortue
done() # Admire ton cuvre !

Analyse rapide (comme un détective ﬁ) :
e input("Message") pose une question a l'utilisateur et stocke la réponse (comme une chaine
de caracteres, aka "str").
e int() convertit ¢a en nombre entier (sinon, boom — erreur ! Voir TP sur les types de
données).
e Résultat : Ton rectangle est unique a chaque run. Essaie des couleurs folles comme "purple"
ou "hotpink" !

Remarque importante ! Sans int(), la réponse est du texte — pas utilisable pour des maths.

Toujours convertir pour les nombres !

Exercice fun : Ajoute des input() dans tes scripts du carré sans coin et de la spirale. Laisse
l'utilisateur choisir la taille, la couleur, et peut-étre le nombre de tours pour la spirale.
Bonus : Ajoute un input () pour l'épaisseur du trait (pensize()). Qui fera la spirale la plus épique

? (&)

3. Création de Fonctions avec def 5(

Les fonctions, c'est comme des recettes réutilisables : écris une fois, utilise partout ! Parfait pour

ne pas réécrire le méme code.

Exemple pour le rectangle (crée un fichier fonction_rectangle.py et teste) :
from turtle import *

def rectangle(longueur, largeur, couleur="black"): # Paramétres avec valeur par
défaut pour la couleur
color(couleur) # Applique la couleur
for i in range(2):
forward(longueur) # Utilise les variables !
left(90)
forward(largeur)
left(90)

Teste la fonction ici ou en console !

rectangle(150, 70, "blue") # Appelle-la avec tes valeurs
hideturtle()

done()

Comment ¢ca marche ?
o def nom_fonction(params): définit ta fonction (les parameétres ne sont pas obligatoires).
o Indente le code dedans (encore l'indentation !).
e Appelle-la avec rectangle(150, 70, "blue") — et pouf, dessin ! Ajoute plus de params
comme pensize pour l'épaisseur.

Astuce fun 3 : En console, tape rectangle(200, 100, "red") pour un nouveau dessin sans
relancer tout. C'est magique !

Exercice fun :

Crée deux fichiers : fonction_carre_sans_coin.py et fonction_spirale.py. Implémente des
fonctions avec params (taille, couleur, épaisseur...).

Bonus : Ajoute un param pour le nombre de cotés ou de tours. Teste avec des valeurs extrémes —

qui crash la tortue en premier 7 &

Défi Ultime : La Fractale Mystere
Observe la construction de cette fractale (imagine une belle image ici — probablement une courbe de
Koch ou un arbre fractal, avec es phases qui se complexifient D.

A\ A A A

Ton défi de ninja R : Ecris un programme qui dessine cette fractale a la phase 4... et au-dela !

Utilise la récursion (fonctions qui s'appellent elles-mémes), des boucles, et des input() pour choisir
la phase.

