TP2 : Conversion et Python, le retour

Nous allons faire la suite du premier TP ol nous avions codé un programme qui

permettait la conversion vers la base 10.

Votre objectif sera de faire un programme qui permettra la conversion au départ de la base 10 vers

n’importe quelle base...

Point Python :
Python et les divisions :
Testez les lignes suivantes :

16 / 3
16 // 3
16 % 3
a/b retourne le résultat de la division décimale de a
par b.
a//b retourne le quotient de la division euclidienne
de a par b.
a»b retourne le reste de la division euclidienne de a
par b.
Table des matiéres
INIV@AU @XPCIT :.....eeeeeeeeeeeerreeenrerreneeeereeeesseseenessessenmsssessesessessenssssssesssssessensssensesssssesssnsssensenssssnsennsssensenassansence 2

Niveau expert :

Reéaliser une fonction conversion_depart_10 qui prendra comme arguments le nombre et la base

d’arrivée et retournera ’écriture de ce nombre en base 10 dans la base choisie.

Niveau Newbie :

Mise en place et rappel

Rappel sur cette conversion.
On peut la faire par division successives ou par la méthode des plus grandes puissances

Nous allons opérer avec la méthode des divisions successives.
Si nous avons un nombre en base 10 et que nous voulons sont écrire en base b, alors nous faisons
des divisions euclidiennes successives par b, jusqu’a obtenir un quotient de 0.

La conversion est le nombre écrit a partir des restes obtenus en partant du dernier reste.

Voici un exemple pour comprendre :
Convertissons (41),, vers la base 2 :

|11 |2
1 | 20 2
0 10
0
2
2
1

(41);0 = (101001),

Nous allons donc devoir faire un certain nombre de divisions euclidienne, récupérer et stocker les

restes dans le bon sens et le retourner.

Donc, on sent le besoin d’une boucle.

Pour les boucles, nous avons 2 choix : le for ou le while.

Comment choisir 777

Si vous savez combien de fois boucler, le for est pour vous, si vous avez une condition de fin de
bouclage, le while est a vous.

Dans notre cas, nous savons que nous devons boucler jusqu’a obtenir un quotient de 0, donc partons

pour le while.

Contrairement au dernier programme ou nous ’avons transformé a la fin en fonction, nous allons le

structurer comme tel des le début.

Notre programme s’appellera donc conversion_depart_10, il prendra comme argument le nombre

a convertir N et la base b d’arrivée.

Nous allons ensuite devoir faire un certain nombre de divisions euclidienne, récupérer et stocker les
restes dans le bon sens et le retourner.

Mais combien de division a faire 777

On ne peut pas le savoir simplement.

Par contre, nous savons que nous stopperons nos divisions successives lorsque le quotient obtenu
sera nul.

Par conséquent, nous allons nous orienter vers une boucle en while, plutét qu’une boucle en for..

On obtient un code de départ comme suit :

def conversion_depart_10 (N, base):
qg = N #initialisation du quotient

M="" #initialisation de la réponse
while q > ©:
return M

Pour le stockage, nous allons utiliser ’addition de chaines de caractéres ou concaténation.

Pour comprendre le fonctionnement, teste les ligne suivantes :

a "azerty"
b = "123"

print(a + b)
print(b + a)

Facile de stocker des valeurs...
A partir de 13, tu peux essayer de compléter le code au-dessus...

Réponse page suivante...

def conversion_depart_10 (N, base):
g = N #initialisation du quotient

M="" #initialisation de la réponse
while q > ©:

r =q % base

q =q // base

M=r +M
return M

Vous pouvez la tester avec une conversion vers la base 2 :
conversion_depart_10 (10, 2)

Ou vers la base 16 :
conversion_depart_10 (15, 16)

Vous voyez un probleme 777

Vous avez dii avoir ce message d’erreur :
TypeError: unsupported operand type(s) for +: 'int' and

str
Mais pourquoi?

Et bien tout simplement car M a été défini comme une chaine de caractére, mais quand nous faisons
la division euclidienne, nous travaillons avec des entiers, et notre reste est un entier...

Et quand nous faisons notre concaténation (M = r + M), nous faisons une opération avec un entier
et une chaine de caracteres... Et on ne le peut pas.

Comment corriger cela ?

Testez les lignes suivantes :
a = 123

print(type (a))
a = str(a)

print(type(a))
Nous avons un convertisseur en chaine de caractéres avec le str().
Modifie ton code pour que ca fonctionne.

Réponse page suivante...

def conversion_depart_10 (N, base):
g = N #initialisation du quotient

M="" #initialisation de la réponse
while q > ©:

r =q % base

q =q // base

M= str(r) + M
return M

On repart pour un test :

conversion_depart_10 (10, 2)

Ou vers la base 16 :
conversion_depart_10 (15, 16)

Vous voyez un probleme 777
Et oui, avec la base 16. On a un retour de 15, alors qu’il nous fallait un F.

On n’a pas géré la conversion des résultats des restes en lettres si le reste est supérieur a 10...
Point python :

Teste les lignes suivantes :
print(ord('A'))
print(chr(65))
print(chr(66))

chr() prend un Unicode et fournit le caractére correspondant, le ord() (que I'on connaissait) fournit

I’Unicode du caractere.

Voici une trame que tu vas essayer de compléter :

def conversion_depart_10 (N, base):
qg = N #initialisation du quotient

M="" #initialisation de la réponse
while q > ©:

r =q % base

q =q // base

if r < 10:

else:

M=r +M
return M

Réponse page suivante...

def conversion_depart_10 (N, base):
g = N #initialisation du quotient

M="" #initialisation de la réponse
while q > ©:
r =q % base
q =q // base
if r < 10:
r = str(r)
else:
r = chr(r + 55)
M=r +M
return M

A toi de tester...

Ta fonction ... fonctionne.

Félicitations pour le suivi, dans les prochain TP nous allons revoir les bases entrevues

sur ces 2 TPs puis faire notre premier projet !!!

