Muscle Tes Maths 💪

Inéquations exponentielles


Résoudre \( e^{u(x)} < ou> e^{v(x)} \)

Règle unique :
\( e^{u(x)} < ou> e^{v(x)} \quad \Leftrightarrow \quad u(x) < ou> v(x) \)

Attention : si tu divises ou multiplies par un nombre négatif → tu inverses le sens de l’inégalité !

Exemple : \( e^{3x-2} < e^{5x+6} \)
⇔ \( 3x-2 < 5x+6 \)
⇔ \( -2x < 8 \)
⇔ \( x \textcolor{red}{ \textbf{>}} \dfrac{8}{-2} = 2 \)


Résoudre : \( e^{-5x-7} \, < \, e^{-x+10} \)

\( e^{\textcolor{#1FACD5}{-5x-7}} \, < \, e^{\textcolor{#e67e22}{-x+10}} \)
⇔ \( x \)