Muscle Tes Maths 💪

Vecteur directeur d'une droite sur un graphique





Une droite admet une unique équation réduite de la forme: $y=mx+p$ avec $m$ et $p \in \mathbb{R}$
Un vecteur directeur de cette droite est: $\overrightarrow{u} (1; m)$.

Exemple:
La droite d'équation $y = -7x -11$ admet comme vecteur directeur $\overrightarrow{u} (1; -7)$.

Remarque:
Tout vecteur directeur colinéaire à $\overrightarrow{u}$ est aussi un vecteur directeur de cette droite...



Une équation de droite de la forme: $ax+by+c=0$ est appelé équation cartésienne.

Une droite admet une infinité d'équation cartésienne.
Un vecteur directeur de cette droite est: $\overrightarrow{v} (-b; a)$.

Exemple:
La droite d'équation $-3x+5y+8=0$ admet comme vecteur directeur $\overrightarrow{u} (-5; -3)$.









Voici un exercice qui te permettra de bien travailler la notion de vecteur directeur à partir de l'équation cartisienne ou réduite d'une droite.





Soit la droite $ (d) $ dont une équation cartésienne est: $3x-y+4=0$.



Un vecteur directeur de cette droite est:

$\overrightarrow{u}$ Image flottante Image flottante



Soit la droite $ (d') $ dont l'équation réduite est: $y=3x-4$.



Un vecteur directeur de cette droite est:

$\overrightarrow{v}$ Image flottante Image flottante