(1) \( P_A(B) = \dfrac{P(A \cap B)}{P(A)} \)
(2) \( P(A \cap B) = P(A) \times P_A(B) \)
(3) \( P(A \cup B) = P(A) + P(B) - P(A \cap B) \)
On a : $P(A) = 0.72$ et $P(A \cap B) = 0.44$ Calculer $P_A(B)$ :
On a : $P(C) = 0.66$, $P(D) = 0.38$ et $P_C(D) = 0.11$ Calculer :
$P(C \cap D) = $
$P_D(C) = $
$P(C \cup D) = $